Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Front Immunol ; 15: 1351777, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576622

RESUMO

Introduction: Streptococcus pyogenes is a Gram-positive pathogen that causes a significant global burden of skin pyoderma and pharyngitis. In some cases, infection can lead to severe invasive streptococcal diseases. Previous studies have shown that IL-17 deficiency in mice (IL-17-/-) can reduce S. pyogenes clearance from the mucosal surfaces. However, the effect of IL-17 on the development of severe invasive streptococcal disease has not yet been assessed. Methods: Here, we modeled single or repeated non-lethal intranasal (IN) S. pyogenes M1 strain infections in immunocompetent and IL-17-/- mice to assess bacterial colonization following a final IN or skin challenge. Results: Immunocompetent mice that received a single S. pyogenes infection showed long-lasting immunity to subsequent IN infection, and no bacteria were detected in the lymph nodes or spleens. However, in the absence of IL-17, a single IN infection resulted in dissemination of S. pyogenes to the lymphoid organs, which was accentuated by repeated IN infections. In contrast to what was observed in the respiratory mucosa, skin immunity did not correlate with the systemic levels of IL-17. Instead, it was found to be associated with the activation of germinal center responses and accumulation of neutrophils in the spleen. Discussion: Our results demonstrated that IL-17 plays a critical role in preventing invasive disease following S. pyogenes infection of the respiratory tract.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Animais , Camundongos , Interleucina-17 , Monitorização Imunológica , Mucosa Respiratória
2.
J Drug Target ; : 1-15, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38404239

RESUMO

The term periodontal disease is used to define diseases characterised by inflammation and regeneration of the gums, cementum, supporting bone, and periodontal ligament. The conventional treatment involves the combination of scaling, root planning, and surgical approaches which are invasive and can pose certain challenges. Intrapocket administration of nanofibers can be used for overcoming challenges which can help in speeding up the wound repair process and can also be used to promote osteogenesis. To help make drug delivery more effective, nanofibers are an interesting solution. Nanofibers are nanosized 3D structures that can fill the pockets and have excellent mucoadhesion which prolongs their retention time on the target site. Moreover, their structure mimics the natural extracellular matrix which enables nanomaterials to sense local biological conditions and start cellular-level reprogramming to produce the necessary therapeutic efficacy. In this review, the significance of intrapocket administration of nanofibers using recent research for the management of periodontitis has been discussed in detail. Furthermore, we have discussed polymers used for the preparation of nanofibers, nanofiber production methods, and the patents associated with these developments. This comprehensive compilation of data serves as a valuable resource, consolidating recent developments in nanofiber applications for periodontitis management into one accessible platform.

3.
Recent Pat Nanotechnol ; 18(2): 256-271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38197418

RESUMO

Neurological disorders (ND) have affected a major part of our society and have been a challenge for medical and biosciences for decades. However, many of these disorders haven't responded well to currently established treatment approaches. The fact that many active pharmaceutical ingredients can't get to their specified action site inside the body is one of the main reasons for this failure. Extracellular and intracellular central nervous system (CNS) barriers prevent the transfer of drugs from the blood circulation to the intended location of the action. Utilizing nanosized drug delivery technologies is one possible way to overcome these obstacles. These nano-drug carriers outperform conventional dosage forms in many areas, including good drug encapsulation capacity, targeted drug delivery, less toxicity, and enhanced therapeutic impact. As a result, nano-neuroscience is growing to be an intriguing area of research and a bright alternative approach for delivering medicines to their intended action site for treating different neurological and psychiatric problems. In this review, we have included a short overview of the pathophysiology of neurological diseases, a detailed discussion about the significance of nanocarriers in NDs, and a focus on its recent advances. Finally, we highlighted the patented technologies and market trends, including the predictive analysis for the years 2021-2028.


Assuntos
60416 , Gerenciamento Clínico , Sistema Nervoso Central , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Patentes como Assunto
4.
Pharm Dev Technol ; 29(1): 25-39, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38014878

RESUMO

BACKGROUND: Emulgels, hybrid formulations of emulsions and gels, offer distinct benefits viz. extended release, enhanced bioavailability, and targeted drug delivery to inflamed joints, thereby minimizing systemic side effects, and maximizing therapeutic efficacy in targeting the diseases. Oral medications and topical creams have limitations viz. limited permeation, efficacy, and side effects. Arthritis is a prevalent chronic inflammatory disorder affecting a substantial global population of about 350 million necessitating the exploration of innovative and effective treatment approaches. Inflammation of one or more joints in the body is referred to generally as arthritis, associated with joint discomfort, edema, stiffness, and decreased motion in the joints. MAIN PART: Emulgels further improve drug solubility and penetration into the affected tissues, augmenting the potential for disease-modifying effects. This review article comprehensively examines recent research for the potential of emulgels (micro- and nanoemulgels) as a potential therapeutic approach for arthritis management, thus showcasing their promising potential in precise treatment regimens. Despite the considerable progress in emulgel-based arthritis therapies, the review emphasizes the need for additional research and translation to clinical trials, thus ascertaining their long-term safety, efficacy, and cost-effectiveness compared to conventional treatments. CONCLUSION: With ongoing advancements in drug delivery, emulgels present an exciting frontier in arthritis-associated conditions, with the potential to revolutionize arthritis treatment and significantly enhance patient life's quality.


Assuntos
Artrite , Sistemas de Liberação de Medicamentos , Humanos , Artrite/tratamento farmacológico , Géis
5.
Expert Opin Drug Discov ; 19(3): 303-316, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38112196

RESUMO

INTRODUCTION: Owing to limited efficient treatment strategies for highly prevalent and distressing Parkinson's disease (PD), an impending need emerged for deciphering new modes and mechanisms for effective management. SH-SY5Y-based in vitro neuronal models have emerged as a new possibility for the elucidation of cellular and molecular processes in the pathogenesis of PD. SH-SY5Y cells are of human origin, adhered to catecholaminergic neuronal attributes, which consequences in imparting wide acceptance and significance to this model over conventional in vitro PD models for high-throughput screening of therapeutics. AREAS COVERED: Herein, the authors review the SH-SY5Y cell line and its value to PD research. The authors also provide the reader with their expert perspectives on how these developments can lead to the development of new impactful therapeutics. EXPERT OPINION: Encouraged by recent research on SH-SY5Y cell lines, it was envisaged that this in vitro model can serve as a primary model for assessing efficacy and toxicity of new therapeutics as well as for nanocarriers' capacity in delivering therapeutic agents across BBB. Considering the proximity with human neuronal environment as in pathogenic PD conditions, SH-SY5Y cell lines vindicated consistency and reproducibility in experimental results. Accordingly, exploitation of this standardized SH-SY5Y cell line can fast-track the drug discovery and development path for novel therapeutics.


Assuntos
Neuroblastoma , Doença de Parkinson , Humanos , Linhagem Celular Tumoral , Doença de Parkinson/tratamento farmacológico , Reprodutibilidade dos Testes , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Descoberta de Drogas
6.
Biomater Adv ; 157: 213733, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38118207

RESUMO

Cancer has become a major public health issue leading to one of the foremost causes of morbidity and death in the world. Despite the current advances in diagnosis using modern technologies and treatment via surgery or chemo- and radio-therapies, severe side effects or after-effects limit the application of these treatment modalities. Novel drug delivery systems have shown the potential to deliver chemotherapeutics directly to cancer cells, thus minimizing unnecessary exposure to healthy cells. Concurrently, to circumvent difficulties associated with conventional deliveries of cancer therapeutics, natural polysaccharides have gained attention for the fabrication of such deliveries owing to biocompatibility, low toxicity, and biodegradability. It has been exhibited that natural polysaccharides can deliver high therapeutic concentrations of the entrapped drug to the target cells by sustained and targeted release. Considering the immense potential of natural polymers, the present work focuses on naturally generated biopolymer carriers based on chitosan and hyaluronic acid. This review delineated on the role of chitosan and its derivation from renewable resources as a biocompatible, biodegradable, nonimmunogenic material with notable antitumor activity as a drug delivery carrier in oncotherapy. Moreover, hyaluronic acid, itself by its structure or when linked with other molecules contributes to developing promising pharmaceutical delivery systems to setback the restrictions related to conventional cancer treatment.


Assuntos
Quitosana , Neoplasias , Humanos , Quitosana/química , Quitosana/uso terapêutico , Ácido Hialurônico/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Portadores de Fármacos/química , Polissacarídeos , Materiais Biocompatíveis
7.
AAPS PharmSciTech ; 24(8): 252, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049695

RESUMO

Tuberculosis (TB) is among the top 10 infectious diseases worldwide. It is categorized among the leading killer diseases that are the reason for the death of millions of people globally. Although a standardized treatment regimen is available, non-adherence to treatment has increased multi-drug resistance (MDR) and extensive drug-resistant (XDR) TB development. Another challenge is targeting the death of TB reservoirs in the alveoli via conventional treatment. TB Drug resistance may emerge as a futuristic restraint of TB with the scarcity of effective Anti-tubercular drugs. The paradigm change towards nano-targeted drug delivery systems is mostly due to the absence of effective therapy and increased TB infection recurrent episodes with MDR. The emerging field of nanotechnology gave an admirable opportunity to combat MDR and XDR via accurate diagnosis with effective treatment. The new strategies targeting the lung via the pulmonary route may overcome the new incidence of MDR and enhance patient compliance. Therefore, this review highlights the importance and recent research on pulmonary drug delivery with nanotechnology along with prevalence, the need for the development of nanotechnology, beneficial aspects of nanomedicine, safety concerns of nanocarriers, and clinical studies.


Assuntos
Tuberculose Extensivamente Resistente a Medicamentos , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/epidemiologia , Sistemas de Liberação de Medicamentos , Pulmão
8.
Health Sci Rep ; 6(11): e1642, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37915365

RESUMO

Background and Aims: Diabetes is a global concern. This article took a closer look at diabetes and precision medicine. Methods: A literature search of studies related to the use of precision medicine in diabetes care was conducted in various databases (PubMed, Google Scholar, and Scopus). Results: Precision medicine encompasses the integration of a wide array of personal data, including clinical, lifestyle, genetic, and various biomarker information. Its goal is to facilitate tailored treatment approaches using contemporary diagnostic and therapeutic techniques that specifically target patients based on their genetic makeup, molecular markers, phenotypic traits, or psychosocial characteristics. This article not only highlights significant advancements but also addresses key challenges, particularly focusing on the technologies that contribute to the realization of personalized and precise diabetes care. Conclusion: For the successful implementation of precision diabetes medicine, collaboration and coordination among multiple stakeholders are crucial.

9.
Pathol Res Pract ; 251: 154893, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37918101

RESUMO

Breast cancer is one of the major reason for death of women worldwide. As per the International Agency for Research on Cancer (IARC) statistics, the number of cases of breast cancer is increasing year by year in many parts of the world. As per the recent global cancer burden figures, in 2020, there were 2.26 million incidences of breast cancer cases and it is one of the main causes of mortality due to cancer in women in the world. Biomarkers of breast cancer would prove to be very beneficial to screen women who are at higher risk and for detection of disease recurrence. Here, studies carried out on biomarkers of breast cancer and susceptibility to the disease have been reviewed. Various databases like Google Scholar, ScienceDirect and PubMed have been used for searching and majorly literature from the last 10 years have been considered. Potential biomarkers of breast cancer including blood based angiogenic factors, glycoprotein-based biomarkers, hormone receptor biomarkers and other biomarkers that were identified from various studies have been summarized.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Prognóstico , Recidiva Local de Neoplasia , Incidência , Biomarcadores
10.
Artigo em Inglês | MEDLINE | ID: mdl-37849227

RESUMO

The prevalence of thyroid cancer (TC) is more common in women and is up to 43% in patients aged between 45-65 years. The battle against TC is hampered by the lack of effective diagnostic and therapeutic approaches. The effectiveness of surgical procedures, such as thyroidectomy and nutraceutical treatments, are accompanied by several difficulties and still require further research. Alternatively, the DNA-damaging traditional model of chemotherapy is linked to poor solubility, untoward systemic effects, and associated cytotoxicity, instituting an urgent need to establish a specialized, factual, and reliable delivery tool. In order to overcome the limitations of conventional delivery systems, nanotechnology-based delivery tools have shown the potential of articulating endless inherent implementations. The probable benefits of emerging nanotechnology-based diagnostic techniques include rapid screening and early illness diagnosis, which draws investigators to investigate and assess the possibility of this treatment for TC. Subsequently, organic (e.g., liposomes, polymer-based, and dendrimers) and inorganic (e.g., gold, carbon-based, mesoporous silica, magnetic, and quantum dots) NPs and hybrids thereof (liposome-silica, chitosan-carbon, and cell membrane-coated) have been projected for TC biomarker screening, therapy, and detection, providing better outcomes than traditional diagnostic and treatment techniques. Therefore, this review aims to offer a broad perspective on nanoplatform in TC, accompanied by present and potential future treatment options and screening techniques. The goal of cancer therapy has traditionally been to "search a thorn in a hayloft"; therefore, this article raises the possibility of treating TC using nano-oncotherapeutics, which might be useful clinically and will encourage future researchers to explore this tool's potential and drawbacks.

11.
Nat Commun ; 14(1): 5963, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749129

RESUMO

Mucosally active subunit vaccines are an unmet clinical need due to lack of licensed immunostimulants suitable for vaccine antigens. Here, we show that intranasal administration of liposomes incorporating: the Streptococcus pyogenes peptide antigen, J8; diphtheria toxoid as a source of T cell help; and the immunostimulatory glycolipid, 3D(6-acyl) PHAD (PHAD), is able to induce long-lived humoral and cellular immunity. Mice genetically deficient in either mucosal antibodies or total antibodies are protected against S. pyogenes respiratory tract infection. Utilizing IL-17-deficient mice or depleting cellular subsets using antibodies, shows that the cellular responses encompassing, CD4+ T cells, IL-17, macrophages and neutrophils have important functions in vaccine-mediated mucosal immunity. Overall, these data demonstrate the utility of a mucosal vaccine platform to deliver multi-pronged protective responses against a highly virulent pathogen.


Assuntos
Lipossomos , Streptococcus pyogenes , Camundongos , Animais , Neutrófilos , Interleucina-17 , Antígenos de Bactérias , Macrófagos , Administração Intranasal , Imunidade nas Mucosas , Vacinas de Subunidades , Camundongos Endogâmicos BALB C
12.
Int J Biol Macromol ; 253(Pt 1): 126623, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37657573

RESUMO

The quest for safe chemotherapy has attracted researchers to explore anticancer potential of herbal medicines. Owing to upsurging evidence of herbal drug's beneficial effects, hopes are restored for augmenting survival rates in cancer patients. However, phytoconstituents confronted severe limitations in terms of poor absorption, low-stability, and low bioavailability. Along with toxicity issues associated with phytoconstituents, quality control and limited regulatory guidance also hinder the prevalence of herbal medicines for cancer therapy. Attempts are underway to exploit nanocarriers to circumvent the limitations of existing and new herbal drugs, where biological macromolecules (e.g., chitosan, hyaluronic acid, etc.) are established highly effective in fabricating nanocarriers and cancer targeting. Among the discussed nanocarriers, liposomes and micelles possess properties to cargo hydro- and lipophilic herbal constituents with surface modification for targeted delivery. Majorly, PEG, transferrin and folate are utilized for surface modification to improve bioavailability, circulation time and targetability. The dendrimer and carbon nanotubes responded in high-loading efficiency of phytoconstituent; whereas, SLN and nanoemulsions are suited carriers for lipophilic extracts. This review emphasized unveiling the latent potential of herbal drugs along with discussing on extended benefits of nanocarriers-based delivery of phytoconstituents for safe cancer therapy owing to enhanced clinical and preclinical outcomes without compromising safety.


Assuntos
Nanopartículas , Nanotubos de Carbono , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Lipossomos/uso terapêutico , Extratos Vegetais/uso terapêutico , Sistemas de Liberação de Medicamentos
13.
J Biochem Mol Toxicol ; 37(11): e23482, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37530602

RESUMO

Inflammation is an essential immune response that helps fight infections and heal tissues. However, chronic inflammation has been linked to several diseases, including cancer, autoimmune disorders, cardiovascular diseases, and neurological disorders. This has increased interest in finding natural substances that can modulate the immune system inflammatory signaling pathways to prevent or treat these diseases. Luteolin is a flavonoid found in many fruits, vegetables, and herbs. It has been shown to have anti-inflammatory effects by altering signaling pathways in immune cells. This review article discusses the current research on luteolin's role as a natural immune system modulator of inflammatory signaling mechanisms, such as its effects on nuclear factor-kappa B, mitogen-activated protein kinases, Janus kinase/signal transducer and activator of transcription, and inflammasome signaling processes. The safety profile of luteolin and its potential therapeutic uses in conditions linked to inflammation are also discussed. Overall, the data point to Luteolin's intriguing potential as a natural regulator of immune system inflammatory signaling processes. More research is needed to fully understand its mechanisms of action and possible therapeutic applications.


Assuntos
Luteolina , Neoplasias , Humanos , Luteolina/farmacologia , Luteolina/uso terapêutico , Inflamação/tratamento farmacológico , Neoplasias/tratamento farmacológico , Transdução de Sinais , Sistema Imunitário
14.
NPJ Vaccines ; 8(1): 102, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452052

RESUMO

Group A Streptococcus (Strep A) is a life-threatening human pathogen with no licensed vaccine. Here, we used a biopolymer particle (BP) approach to display repeats of Strep A vaccine candidate peptides p*17 and K4S2 derived from M and non-M protein, respectively. BPs densely displaying both peptides (BP-p*17-S2) were successfully assembled in one-step inside an engineered endotoxin-free Escherichia coli strain. Purified BP-p*17-S2 showed a spherical core-shell morphology with a biopolymer core and peptide shell. Upon formulation with aluminum hydroxide as adjuvant, BP-p*17-S2 exhibited a mean diameter of 2.9 µm and a positive surface charge of 22 mV. No cytotoxicity was detected when tested against HEK-293 cells. Stability studies showed that BP-p*17-S2 is ambient-temperature stable. Immunized mice showed no adverse reactions, while producing high titers of peptide specific antibodies and cytokines. This immune response could be correlated with protective immunity in an animal model of infection, i.e. intranasal challenge of mice with Strep A, where a significant reduction of >100-fold of pathogen burden in nose-associated lymphoid tissue, lung, and spleen was obtained. The cost-effective scalable manufacture of ambient-temperature stable BPs coated with Strep A peptides combined with their immunogenic properties offer an attractive alternative strategy to current Strep A vaccine development.

15.
AAPS PharmSciTech ; 24(6): 151, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438613

RESUMO

Since earlier times, dermatological remedies have been utilized to treat diseases associated with pain, irritation, and skin conditions. Compared to other routes of drug delivery, topical delivery of drugs offers several benefits. Scientists are investigating different alterations in dosage forms in addition to existing topical formulations such as ointments, gels, creams, lotions, and ointments to significantly improve the permeation of drugs and enhance the pharmacological efficacy of medications that are poorly absorbed via the skin. Conventional formulations have a plethora of problems viz. poor absorption, no target specificity, low spreadability, and inadequate bioavailability which leads the researchers toward developing novel formulations like nanoemulsions. The nanoemulsion can enhance the gradient in concentration and thermodynamic movement toward the epidermis and enhance the penetration of its constituents. However, due to its difficult application, nanoemulsion's lower viscosity limited its use in transdermal delivery. Thus, the development of nanoemulsion-based hydrogels has shown to be a successful strategy for removing obstacles from existing drug formulations. The simple application, expedient spreadability, non-stickiness, safety, and effectiveness of nanoemulsion-based hydrogel have led to substantial growth in their research in recent years. This review gives a brief idea about the prevalence of skin diseases, skin as an obstacle for drug delivery, and recent research insights to combat these obstacles. The work highlights the mechanism of drug release via nanoemulsion, hydrogels, and nanoemulsion-based hydrogels with reference to recent research on hydrophobic and hydrophilic drugs.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Pomadas , Difusão , Disponibilidade Biológica
16.
Curr Pharm Des ; 29(40): 3254-3262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37438899

RESUMO

The prevalence of vaginal infection is increasing among women, especially at reproductive age. For proper eradication of infection, the effective concentration of a drug is required at the infection site. Therefore, local delivery is recommended to exert a direct therapeutic effect at the site action that causes a reduction in dose and side effects. The main focus of vaginal drug delivery is to enhance retention time and patient compliance. The high recurrence rate of vaginal infection due to the lack of effective treatment strategies opens the door for new therapeutic approaches. To combat these setbacks, intravaginal gene therapies have been investigated. High attention has been gained by vaginal gene therapy, especially for sexually transmitted infection treatment. Despite much research, no product is available in the market, although in vitro and preclinical data support the vaginal route as an effective route for gene administration. The main focus of this review is to discuss the recent advancement in miniaturized polymeric systems for intravaginal gene therapies to treat local infections. An overview of different barriers to vaginal delivery and challenges of vaginal infection treatment are also summarised.


Assuntos
Candidíase Vulvovaginal , Feminino , Humanos , Candidíase Vulvovaginal/tratamento farmacológico , Vagina , Administração Intravaginal , Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas , Terapia Genética
17.
Biomater Adv ; 153: 213556, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37478770

RESUMO

Cancer at the lower end of the digestive tract, colorectal cancer (CRC), starts with asymptomatic polyps, which can be diagnosed as cancer at a later stage. It is the fourth leading cause of malignancy-associated mortality worldwide. Despite progress in conventional treatment strategies, the possibility to overcome the mortality and morbidity issues with the enhancement of the lifespan of CRC patients is limited. With the advent of nanocarrier-based drug delivery systems, a promising revolution has been made in diagnosis, treatment, and theranostic purposes for cancer management. Herein, we reviewed the progress of miniaturized nanocarriers, such as liposomes, niosomes, solid lipid nanoparticles, micelles, and polymeric nanoparticles, employed in passive and active targeting and their role in theranostic applications in CRC. With this novel scope, the diagnosis and treatment of CRC have proceeded to the forefront of innovation, where specific characteristics of the nanocarriers, such as processability, flexibility in developing precise architecture, improved circulation, site-specific delivery, and rapid response, facilitate the management of cancer patients. Furthermore, surface-engineered technologies for the nanocarriers could involve receptor-mediated deliveries towards the overexpressed receptors on the CRC microenvironment. Moreover, the potential of clinical translation of these targeted miniaturized formulations as well as the possible limitations and barriers that could impact this translation into clinical practice were highlighted. The advancement of these newest developments in clinical research and progress into the commercialization stage gives hope for a better tomorrow.


Assuntos
Neoplasias Colorretais , Portadores de Fármacos , Humanos , Medicina de Precisão , Sistemas de Liberação de Medicamentos , Micelas , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/tratamento farmacológico , Microambiente Tumoral
18.
Oral Health Prev Dent ; 21(1): 83-92, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36920256

RESUMO

PURPOSE: To assess the levels of oral health-related quality of life (OHRQoL) in orthodontic patients both during the suspension of dental services caused by COVID-19 and after a year of dental service reinstatement, and to evaluate the associated factors for OHRQoL in those patients during the suspension period. MATERIALS AND METHODS: A cross-sectional online study was conducted both during the suspension of dental service due to COVID-19 (T1) and after a year of dental service reinstatement (T2). The questionnaire - consisting of personal information, subjective complaints, OHIP-14 and oral health conditions - was completed by the participants at T1 and T2. Data were evaluated by the Χ2 test, the Wilcoxon rank-sum test, and multivariate logistic regression analysis. RESULTS: 324 participants were ultimately included in the study sample. The participants reported higher OHIP-14 total scores at T1 than T2 (p < 0.001). Statistically significant differences were detected in the domains psychological discomfort, psychological disability, social disability and handicap (p < 0.001). The multivariate logistic regression analysis showed that wearing fixed appliances, being over 18 years old, having delayed orthodontic treatment and poor oral hygiene habits were statistically significantly associated with higher OHIP-14 total scores at T1 (p < 0.05). CONCLUSION: The OHRQoL in orthodontic patients was negatively impacted by the suspension of dental services during COVID-19, which was reflected in all the psychosocial domains. Types of appliances, ages, delays in follow-up visits and oral hygiene habits seemed to be the factors associated with OHRQoL in orthodontic patients during the suspension.


Assuntos
COVID-19 , Qualidade de Vida , Humanos , Adolescente , Qualidade de Vida/psicologia , Saúde Bucal , Estudos Transversais , Pandemias , COVID-19/epidemiologia , Assistência Odontológica , Inquéritos e Questionários
19.
mBio ; 14(1): e0348822, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36744883

RESUMO

Mutation within the Streptococcus pyogenes (Streptococcus group A; Strep A) covR/S regulatory system has been associated with a hypervirulent phenotype resulting from the upregulation of several virulence factors, including the pore-forming toxin, streptolysin O (SLO). In this study, we utilized a range of covR/S mutants, including M1T1 clonal strains (5448 and a covS mutant generated through mouse passage designated 5448AP), to investigate the contribution of SLO to the pathogenesis of covR/S mutant Strep A disease. Up-regulation of slo in 5448AP resulted in increased SLO-mediated hemolysis, decreased dendritic cell (DC) viability post coculture with Strep A, and increased production of tumor necrosis factor (TNF) and monocyte chemoattractant protein 1 (MCP-1) by DCs. Mouse passage of an isogenic 5448 slo-deletion mutant resulted in recovery of several covR/S mutants within the 5448Δslo background. Passage also introduced mutations in non-covR/S genes, but these were considered to have no impact on virulence. Although slo-deficient mutants exhibited the characteristic covR/S-controlled virulence factor upregulation, these mutants caused increased DC viability with reduced inflammatory cytokine production by infected DCs. In vivo, slo expression correlated with decreased DC numbers in infected murine skin and significant bacteremia by 3 days postinfection, with severe pathology at the infection site. Conversely, the absence of slo in the infecting strain (covR/S mutant or wild-type) resulted in detection of DCs in the skin and attenuated virulence in a murine model of pyoderma. slo-sufficient and -deficient covR/S mutants were susceptible to immune clearance mediated by a combination vaccine consisting of a conserved M protein peptide and a peptide from the CXC chemokine protease SpyCEP. IMPORTANCE Streptococcus pyogenes is responsible for significant numbers of invasive and noninvasive infections which cause significant morbidity and mortality globally. Strep A isolates with mutations in the covR/S system display greater propensity to cause severe invasive diseases, which are responsible for more than 163,000 deaths each year. This is due to the upregulation of virulence factors, including the pore-forming toxin streptolysin O. Utilizing covR/S and slo-knockout mutants, we investigated the role of SLO in virulence. We found that SLO alters interactions with host cell populations and increases Strep A viability at sterile sites of the host, such as the blood, and that its absence results in significantly less virulence. This work underscores the importance of SLO in Strep A virulence while highlighting the complex nature of Strep A pathogenesis. This improved insight into host-pathogen interactions will enable a better understanding of host immune evasion mechanisms and inform streptococcal vaccine development programs.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Animais , Camundongos , Virulência/genética , Estreptolisinas/genética , Estreptolisinas/metabolismo , Proteínas de Bactérias/metabolismo , Fatores de Virulência/metabolismo
20.
NPJ Vaccines ; 8(1): 9, 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739443

RESUMO

We have developed a candidate vaccine to protect against multiple strains of Streptococcus pyogenes infections. The candidate vaccine contains two synthetic peptides derived from S. pyogenes proteins: the M-protein epitope, p*17 and the IL-8 degrading S. pyogenes Cell-Envelope Proteinase (SpyCEP) epitope, K4S2. In this study we utilise a rat autoimmune valvulitis model that displays both the cardiac and neurobehavioural pathology associated with post-streptococcal sequelae, to assess if the vaccine candidate antigens induce autoimmune complications and inflammatory pathology. Each antigen was conjugated to carrier protein diphtheria toxoid (DT) and independently assessed for potential to induce autoimmune pathology in female Lewis rats. Rats were administered three subcutaneous doses, and one intranasal dose over a four-week study with a two-week recovery period. A positive control group received recombinant S. pyogenes M5 (rM5) protein, and the negative control group received PBS. Rats that received rM5 developed significant cardiac and neurological pathologies. There was no evidence of these pathologies in the PBS control group, or the rats administered either P*17-DT or K4S2-DT. This study provides further preclinical evidence of the safety of the vaccine candidates p*17 and K4S2 and their appropriateness as candidates in human clinical trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...